Kinesin-8 Motors Act Cooperatively to Mediate Length-Dependent Microtubule Depolymerization
نویسندگان
چکیده
منابع مشابه
Kinesin-8 Motors Act Cooperatively to Mediate Length-Dependent Microtubule Depolymerization
Motor proteins in the kinesin-8 family depolymerize microtubules in a length-dependent manner that may be crucial for controlling the length of organelles such as the mitotic spindle. We used single-molecule microscopy to understand the mechanism of length-dependent depolymerization by the budding yeast kinesin-8, Kip3p. We found that after binding at a random position on a microtubule and walk...
متن کاملKinesin-8 motors improve nuclear centering by promoting microtubule catastrophe.
In fission yeast, microtubules push against the cell edge, thereby positioning the nucleus in the cell center. Kinesin-8 motors regulate microtubule catastrophe; however, their role in nuclear positioning is not known. Here we develop a physical model that describes how kinesin-8 motors affect nuclear centering by promoting a microtubule catastrophe. Our model predicts the improved centering of...
متن کاملCrowding of molecular motors determines microtubule depolymerization.
The assembly and disassembly dynamics of microtubules (MTs) is tightly controlled by MT-associated proteins. Here, we investigate how plus-end-directed depolymerases of the kinesin-8 family regulate MT depolymerization dynamics. Using an individual-based model, we reproduce experimental findings. Moreover, crowding is identified as the key regulatory mechanism of depolymerization dynamics. Our ...
متن کاملStructure of a kinesin microtubule depolymerization machine.
With their ability to depolymerize microtubules (MTs), KinI kinesins are the rogue members of the kinesin family. Here we present the 1.6 A crystal structure of a KinI motor core from Plasmodium falciparum, which is sufficient for depolymerization in vitro. Unlike all published kinesin structures to date, nucleotide is not present, and there are noticeable differences in loop regions L6 and L10...
متن کاملMicrotubule organization by kinesin motors and microtubule crosslinking protein MAP65.
Microtubules are rigid, proteinaceous filaments required to organize and rearrange the interior of cells. They organize space by two mechanisms, including acting as the tracks for long-distance cargo transporters, such as kinesin-1, and by forming a network that supports the shape of the cell. The microtubule network is composed of microtubules and a bevy of associated proteins and enzymes that...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Cell
سال: 2009
ISSN: 0092-8674
DOI: 10.1016/j.cell.2009.07.032